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Abstract— In robotic applications, we often obtain tons of 3D
point cloud data without color information, and it is difficult to
visualize point clouds in a meaningful and colorful way. Can we
colorize 3D point clouds for better visualization? Existing deep
learning-based colorization methods usually only take simple
3D objects as input, and their performance for complex scenes
with multiple objects is limited. To this end, this paper proposes
a novel semantics-and-geometry-aware colorization network,
termed SGNet, for vivid scene-level point cloud colorization.
Specifically, we propose a novel pipeline that explores geometric
and semantic cues from point clouds containing only coordi-
nates for color prediction. We also design two novel losses,
including a colorfulness metric loss and a pairwise consistency
loss, to constrain model training for genuine colorization. To
the best of our knowledge, our work is the first to generate
realistic colors for point clouds of large-scale indoor scenes.
Extensive experiments on the widely used ScanNet benchmarks
demonstrate that the proposed method achieves state-of-the-art
performance on point cloud colorization.

I. INTRODUCTION

3D sensors (e.g., depth sensor, time-of-flight sensor, and
LiDAR) are capable of perceiving fine 3D geometric in-
formation of the scene but unable to capture appearance
details (e.g., color and texture) of the surroundings, compared
with image sensors. In lots of robotic applications, only 3D
sensors are utilized without any color information, which
makes 3D data visualization challenging. Therefore, it is
desirable to visualize with vivid color because colorized 3D
data is perceptually more meaningful and credible, which
often conveys rich semantics clues, thus not only provid-
ing better scene understanding to human beings but also
significant improvements for visual recognition [1], [2] in
modern AR/VR and robotic applications. As shown in Fig. 1,
compared with the original point cloud with coordinates only,
with the support of color information, the colorized point
cloud makes the scene easier to understand visually, greatly
improving the recognizability of objects. Therefore, point
cloud colorization is an emerging topic for better 3D data
visualization and visual perception.

Colorizing monochromatic images or videos has been
studied extensively and achieved significant progress, which
is widely applied in legacy photos or video restoration [3],
image compression [4], video surveillance [S] and 3D mod-
eling [6]. However, research on point cloud colorization
remains limited, mainly due to its irregular and disordered
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(c) Ground truth.

(a) Input. (b) Our colorized.

Fig. 1: Illustration of point cloud colorization. (a) The input
3D point cloud with coordinates only. (b) Our colorized point
cloud with predicted color information. (c) The ground-truth
point cloud with real color information.

data structure, sparse geometric information, and no gray-
scale hints or texture for appearance details, especially for
complex indoor scenes with multiple kinds of objects.

Different from image data, the aforementioned unique
characteristics of point clouds make it difficult to explore
semantics from point clouds [7]. While as pointed out by
prior work [2], [8], the colorization task inherently requires
a semantic understanding of the data, e.g., understanding
what type of an object is colorized. As a result, colorization
solutions often highlight the importance of semantics. What
is worse, the high-performance training methods for images
do not work well on 3D data [9]. To our knowledge, point
cloud colorization is a challenging and under-explored topic
in computer vision.

To obtain convincing colorization, researchers have re-
cently regarded point cloud colorization as a conditional
generative task, and some generative adversarial networks
(GANs)-based colorization methods are proposed to produce
bright point cloud colors, including PCNN [1], Dense-
Point [10], Point2color [11], and HyperColor [12]. These
methods often employ a generator to produce realistic fake
colors to fool the discriminator, which differentiates between
the real data and the generated color. However, these methods
still suffer from limitations. Firstly, they often only support
the simple 3D object as input, and thus they would be
cast into the shade when it comes to complex scenarios
(e.g., multiple objects, and cluttered background). Secondly,
colored point clouds often exhibit unsatisfactory artifacts,
incoherent colors, or colorizations that homogeneously color
the entire scene regardless of differences between objects.

To tackle the above challenges, in this paper, we pro-
pose a point cloud colorization method, i.e., semantics-and-
geometry-aware colorization network (SGNet), for plausible
scene-level point cloud colorization. Specifically, we propose



a new colorization pipeline that excavates the geometric and
semantic cues from coordinate-only point clouds to generate
credible coloring results. The proposed method can colorize
the point cloud based on the semantics or types of objects
or regions. We also develop multiple constraints, including
colorfulness metric and pairwise consistency, to promote the
model to produce realistic and colorful color predictions for
point clouds. To our knowledge, this is the first work to
colorize point clouds with outstanding performance for large-
scale indoor scenes. In a nutshell, the main contributions can
be summarized as follows.

o We propose a novel colorization method, the semantics-
and-geometry-aware colorization network (SGNet), for
scene-level point cloud colorization, which takes the
point cloud with only coordinates only as input for plau-
sible color generation using a sparse fully convolutional
network.

« To facilitate the color learning process, we also present
two novel losses into point cloud colorization, including
a colorfulness metric loss that enforces the model to
produce visually vibrant colors and a pairwise con-
sistency loss to constrain the uniformity between the
ground truth and predictions, which greatly boost the
performance.

« We validate the proposed method on the widely-used
ScanNet indoor complex scene dataset, and extensive
experiments demonstrate the effectiveness of the pro-
posed model with superior performance to the previous
state-of-the-art point cloud approaches quantitatively
and qualitatively.

II. RELATED WORK

Although Image colorization has achieved great progress,
it is not easy to directly apply image colorization methods
to 3D data due to big data differences. 3D data colorization
often contains colorization of depth maps [13], [14], vox-
els [9], point clouds [1] and meshes [15]. In this paper, we
focus on point cloud colorization. Compared with other 3D
data, point cloud data is irregular and disordered, making
colorization relatively more challenging.

Traditionally, texture mapping is used to associate point
clouds with color [16], [17]. However, these methods often
require predefined texture patterns or well-registered color
images. They thus are not applicable for generating new
colorization only from the point cloud data with no ad-
ditional inputs. Given the success of generative models in
image colorization, recent works apply generative models
to colorize point clouds. [1] proposes a point cloud col-
orization network (PCCN) based on conditional generative
adversarial network (cGAN) [18]. While PointNet [19] is
integrated into a generator to predict the color and into a
discriminator to judge whether the color is artificial or real.
Similarly, Cao et al. [10] introduces a DensePoint dataset for
point cloud colorization and presents a colorization method
based on cGAN and PointNet. However, it trains each
category of objects in separate networks. To support multiple
style colorization, recently, Kostiuk et al. [12] presented

the HyperColor for synthesizing auto-colored 3D models.
The method adopts two improved autoencoder models to
generate 3D point clouds of objects and colors for each
point. However, colorizing the point cloud with consistent
color and clear borderlines is difficult. In [11], Shinohara et
al. propose a point2color model for airborne point cloud
colorization, which uses the cGAN model to estimate the
color of each point and the differentiable rendering to assist
the colorization ability. However, this model tends to ignore
small objects when colorized. We observe that point cloud
colorization is in its infancy and remains an under-explored
problem. This paper provides a first step toward objectively
understanding why some point clouds are perceived as real-
world models.

III. METHOD

This section will describe the proposed method for point
cloud colorization in detail.

A. Semantics-and-geometry-aware Network

Our proposed model is based on the probabilistic gener-
ative model [20]. The overall architecture of the proposed
method is illustrated in Fig. 2.

Intuitively, we argue that point cloud colorization poten-
tially implies a requirement for scene understanding of point
clouds. We observe, the color information can be well in-
ferred from scene semantic information (i.e., recognized ob-
jects and regions) and scene geometric information (i.e., local
spatial cues). Thus, we first utilize two backbone networks
for the generator to learn discriminating point-wise features
for describing the raw point clouds from both geometric and
semantic perspectives as a pre-step. The point cloud I €
RN*3 (where N is the number of point clouds) only with
coordinate information is directly fed into the designed gen-
erator, which exploits the 3D sparse and fully-convolutional
network to explore the geometric cues and semantic cues of
the point cloud to guide the color generation in the Lab color
spaces. Specifically, we adopt a fully convolutional geometric
feature model (FCGF), introduced in recent work [21] on
3D geometric matching, to extract such sparse geometric
features f, € RV*!6. The FCGF is a fully-convolutional
network with sparse convolutions, which has bigger receptive
fields and thus can capture broad contextual information to
produce discriminating features that summarize geometric
context. Besides, we adopt the MinkowskiNet [22], which is
a 4D convolutional neural network with generalized sparse
convolutions for high-dimensional semantic perception, to
learn semantic feature representation (f, € R™*29). It can
be formulated as

.fs = f771k(1); (1)
fo = Frel), (2)

where F,,, denotes the MinkowskiNet for semantic explo-
ration, and the Fy. indicates the FCGF model for geomet-
ric exploration. The geometric cues provide local structure
information to facilitate the preservation of fine structures
in colorization. The semantic cues can benefit object/region
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Fig. 2: The architecture of the proposed semantics-and-geometry-aware network for point cloud colorization.

recognition, thereby boosting the differential colorization for
different types of objects/regions.

After that, the learned geometric features and the learned
semantic features of each point are integrated by concate-
nation to obtain an enhanced discriminating feature vector
(fa € RN>*36) for the following color semantic exploration
in Lab color space. Unlike the RGB color model, LAB
is designed to approximate human vision and thus can
well represent color information in the physical world [23].
Considering that lightness (L) and chromaticity (a and b) are
independent in Lab color space, we exploit two branches to
learn lightness representation and chromaticity information,
respectively. Specifically, the aggregated feature f, is fed into
two UNet-like structures with skip connections and residual
blocks, i.e., L generation and ab generation, respectively to
mine valuable color cues and produce the predictions of Lab.
One is used to predict L channel value p; € R™V*! for each
point and the other is for a and b channels py;, € RNx*2,
which can be defined as

fa = fcat(fmfg)a 3)
b = -E(fa)v (4)
Pab = fab(fa)a )

where F,; is concatenation operation, JF; is L generation and
Fap 18 ab generation. Then, we merge these two predictions
to get the final colorized point cloud P. And more qualitative
experiments with different branching strategies is shown in
supplementary material.

B. Loss Functions

To boost colorization learning, we incorporate two novel
losses for point cloud colorization: the colorfulness metric
loss and the pairwise consistency loss. The former forces
the model to learn authentic colors with a broad color
distribution for raw point clouds, and the latter constrains
model predictions to be as consistent as possible with ground
truth. Together with commonly used smoothed L; loss and
adversarial loss, the proposed model is trained to produce
vibrant and realistic colors for point clouds.

1) Colorfulness metric loss ({.p,): To evaluate the col-
orfulness of our colorized point cloud, we can compare
the color distribution of our colorized point cloud and the
ground-truth point cloud. Therefore, the colorization quality
can be evaluated by the difference of color histograms, i.e.,
colorfulness metric [24], which is defined as

Lem = (6disty, + dist, + disty) /8, (6)

where disty, dist, and dist;, are point-wise KL-divergence
of the histograms of the L, a, and b channels of the
point cloud with predicted color and the ground truth. The
proposed loss (£.,,) is to minimize the difference in color
distribution between the prediction and the ground truth.
We compute the color histogram on the luminance chan-
nel, which has been shown to better correlate with human
perception of color, and the weight of dist, is larger than
the other two channel terms because human eyes can capture
subtler color changes of L channels.

2) Pairwise consistency loss ({.o,): Meanwhile, we hope
to keep the inherent smoothness characteristics of predicted
colors remaining the same. Given the input point clouds, we
design a pairwise consistency loss to measure the similarity
of their outputs to achieve random point pairwise consis-
tency, as shown in Fig. 3.

Specifically, we assume that the pair of points that share
similar colors should maintain similar colors for the predicted
point clouds and vice versa. Thus, this consistency loss can
be represented as

~ Nei—gjll

Zcon - Z € A sz - p]” ) (7)
1,JE€S,i#j
where ||-|| denotes the Euclidean distance, and S is the

randomly selected subset from the input point cloud. 7 and j
denote a random pair of points. p; and g; are the predicted
color and the ground-truth color at point i. A is the hyper-
parameter which is trivially set 0.01 in the paper.

3) Smoothed L1 loss (£s): For the point clouds collected
with lidar or RGB-D camera, there are usually lots of noise
and outliers points, and to make the network more robust to



Dissimi

@
Imilar pairg
)
>

Predicted

Fig. 3: Illustration of the pairwise consistency for point
clouds. The clusters represent the ground-truth point clouds
with real colors (left) and the point cloud with generated
colors (right). The similar pair (cyan line) is the point pair
sharing similar color and the dissimilar pair (red line) is
one if not. Note that the pairwise consistency keeps the
relationships between selected similar/dissimilar pairs the
same for ground truth and generated point clouds.

outliers and avoid the gradient explosion during the training
process, we introduce the smoothed L; loss as one of the
loss function term. Suppose g; is the ground-truth color for
the ¢-th point and p; is the predicted color of the ¢-th point,
the smoothed L; loss is defined as
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otherwise,

®)

where ¢ is the threshold and ¢ is the point index. The
threshold helps to make the network training robust to
outliers.

4) Total loss (£1,): One observation of the colorization
problem is that the ground truth of the indoor scene is only
one of the possible colorization strategies. What we hope to
synthesize is the most user-friendly colorization result. To
enhance the ability to differentiate generated data from real
data and improve the realism of the generated colorized point
cloud, we can adopt an adversarial loss for the generator.
Given a (well-trained) discriminator, the objective is to train
the generator so that the discriminator believes the generated
result is realistic. Thus the adversarial loss [25] is adopted
as the generator loss /:

ty = Eullog(l - D(z,G(x)))], ©)

where x is the input [V x 3 tensor representing a point cloud
in our case. G(-) and D(-) denote the generator and the
discriminator respectively. Thus, the total loss for SGNet can
be formulated as

L= eg + aés + Bgcm + Uéco’ru (10)

where a, (3, and o are hyper-parameters used to control the
strength of each loss term. We empirically set a = 5, 8 =
0.1, and o = 0.001 in all experiments.

IV. EXPERIMENTS

This section introduces the experimental setup, includ-
ing datasets, evaluation metrics, comparison methods, and

implementation details. Then, we provide the comparison
experiments with other baselines and ablation studies.

A. Experimental Setup

1) Datasets: We use the widely-used ScanNet
dataset [26], which consists of 1,513 scans covering
20 object categories from 707 unique indoor environments,
such as beds, cabinets, tables, chairs, lamps, and windows.
Each scan is an indoor RGB-D scene, represented as a point
cloud. Each point contains x,y,z coordinates and 7,g,b
colors. The splits of training, validation, and testing sets are
the same as the original setting. We train our model on the
whole dataset from scratch.

2) Evaluation metrics.: We utilize three quantitative met-
rics to evaluate our method, including mean square error
(MSE), fréchet point cloud distance (FPD), and colorfulness
metric (CM). We also provide user study results. Among
these metrics, MSE is used to measure the mean difference
between the predicted color and the ground truth color
of the point clouds. CM is a histogram-based metric that
measures how realistic the resulting color distribution is
close to the ground truth. Besides, an obvious observation
is that realistic colorization results should maintain similar
colors within the same semantic objects. Thus, inspired by
Shu et al. [27], a simple extension of the fréchet inception
distance for point clouds (i.e. FPD) is adopted to calculate
the 2-Wasserstein distance between predicted and ground-
truth Gaussian measures in feature spaces, defined as

FPD(f(p) £(g)) = || me(p) — meg)][; +

1 (4D
Tt (Zee) + Srig) — 2 (S Zew) ) -
where myg (), Ygp) and mg(g), Yg(g) are the mean vector
and covariance matrix of the point cloud calculated from
prediction and ground truth, respectively. The smaller the
FPD, the better the performance.

3) Baselines and Implementation details: To demon-
strate the effectiveness of the proposed method, we choose
regression-based colorization and DensPointNet [10] as base-
lines for comparison. The regression method is a straightfor-
ward solution that directly regresses the color vector from
the input point cloud. DensePointNet also is a generative
adversarial network based on a modified PointNet network.
It does not fit our case because it is specially designed
for small-scale object-level point clouds. So we first down-
sample each scene point cloud into 16,392 points and then
train the model on the whole dataset from scratch with the
same settings based on the code released by the authors.
Then for evaluation, we down-sampled all the results of
comparison methods into 16,392 points with the random
sampling method.

We use the Adam optimizer and set the learning rate to
5e-5 and le-4 for the generator and discriminator. The model
is trained for 80 epochs with a batch size of 12 on NVIDIA
2080Ti GPUs. During the training stage, we update both
generator and discriminator at each step.



TABLE I: Quantitative comparison with other methods for
point cloud colorization using three evaluation metrics. ”|”
or 71" indicates that the method with the smaller or larger
metrics is better than the others. The best results are high-
lighted in bold.

Method MSE | FPD | CM 1
Regression 0.084 £0.015 3.333 £1.676 0.064 £ 0.013
DensePointNet ~ 0.081 £ 0.009 4.106 £ 1.273 0.080 £ 0.010

SGNet (ours) 0.041 £0.019 2.116+1.438 0.221+0.008

B. Experimental Results

1) Qualitative evaluation: Fig. 4 shows the qualitative
comparisons of our proposed method with other comparison
methods on a typical sample from the dataset. These results
intuitively show the superior performance of the proposed
method. Compared with other methods, the proposed method
provides more vibrant and realistic colorization results,
which may benefit from the proposed loss constraints. More-
over, different objects in the scene are differentiated and
colored with clear object structure (i.e., table, and monitor
in the sample), which may benefit from the integration of
semantic and geometric cues. Due to space limitations, more
visual comparisons can be found in the supp.

2) Quantitative evaluation: Tab. I summarize the quan-
titative results of our method against other baselines. It is
clear that our method significantly outperforms all other
models under the three evaluation metrics. Compared to
DensePointNet, the performance gains of MSE, FPD, and
CM are 0.040 (149%), 2.01(149%), and 0.141 (1176%),
respectively, on the testing dataset. Our proposed method
achieves state-of-the-art performance, providing a new strong
baseline for the point cloud colorization community, which
is expected to advance the field. Specifically, compared with
the two baseline methods, the proposed model gets smaller
MSE, FPD values, which indicates the fact that it generates
more reasonable colors for different objects/regions. And
the colorfulness metric of our algorithm is larger than the
compared methods, which is consistent with the qualitative
results in the former section.

3) The perceptual user study: To evaluate whether the
result is user-friendly to the audience, we follow the user
study protocol. The perceptual user study is the key ex-
periment to evaluate the performance of different methods
when the ground truth of not user-friendly performance.
In our experiments, we randomly select 20 samples from
100 testing samples, then let raters who are professional
researchers related to the field assess the quality of these col-
orizations with a three alternative-forced choice test to pick
the best-of-three colorization. We display the re-colorized
point clouds sequentially in random order based on three
comparison methods. Then we report the mean fooling rate
over 13 colorization and 20 different raters for each seed.
Tab. II summarizes the results of our perceptual experiment.
Our method is consistently rated preferable by most users.
Obviously, with these three kinds of evaluation methods, we
can see that our method outperforms all the other state-of-

TABLE II: Preference score in the user study for the col-
orization results of different methods. The best results are
highlighted in bold.

Method Regression DensePointNet Ours

Percentage 3.3% 30.4% 66.3%
TABLE III: Ablation study with different input feature
settings, including only geometric feature (f,), only semantic
feature (fs), and integration of both features (f, + fs). The
best results are highlighted in bold.

Input features MSE | FPD | CM 1
fq 0.079 £ 0.028 2.681 + 1.227 0.069 £ 0.010
fs 0.048 £0.023 2.106+1.454 0.071£0.010
fo+ fs 0.041 £0.019 2.116 +1.438 0.221 + 0.008

the-art methods.

C. Ablation Study

In this section, we perform comprehensive ablation anal-
yses to validate the effectiveness of each key component,
including input feature adoption (e.g., semantic feature, and
geometric feature) and the selection of loss terms. More
analysis (e.g., parameter sensitivity analysis, and prediction
branch selection) can be found in the supplementary material.
Effectiveness of input features (f,&f,). We test the effec-
tiveness of different input features for point cloud coloriza-
tion, as shown in Tab. IIl. Compared with the geometric
feature input, the semantic feature exhibits relatively slightly
better colorization performance, which may stem from min-
ing semantic clues of the scene.

Combining the two can encode more valuable cues and
achieve significant performance improvements, with gains of
about 0.038, 0.565, and 0.152 compared to f, in terms of
MSE, FPD, and CM, 0.007 and 0.150 compared to fs; on
MSE and CM respectively. Fig. 5 provides the visual results.
It can be seen that the geometric version well preserves the
object structure of the scene (e.g., the chair on the right), and
the semantic version considers the semantic differences of
objects/regions for colorization (e.g., the monitor and walls).
The proposed method combines the benefits of both and
provides differentiated coloring with a clear structure for
different objects/regions.

Effectiveness of loss terms. Tab. IV shows the results of
different settings of loss terms. Compared to baseline £+,
adding /., forces the model to produce more colorful colors
with a wider color distribution and thus obtains the best
performance on CM. The £, is used to constrain the relative
color relationships between points to be consistent with the

TABLE IV: Ablation study with different loss terms. The
best results are highlighted in bold.

Method MSE | FPD | CM 1
by +Ls 0.046 £ 0.056 2.840 4+ 1.051 0.190 % 0.009
Ly +Ls +Lem 0.069 £ 0.053 2.301 £1.334 0.300 £ 0.006

Ly +Ls + Leon 0.042 £0.020 2.285+1.649 0.079 +£0.010
Ly +Ls +Lem + Leon 0.041 +£0.019 2.116 £ 1.438 0.221 £ 0.008




(a) Ground truth (b) Regression (c) DensePointNet (d) Ours

Fig. 4: Visual comparisons of the proposed method with other baselines on the ScanNet dataset. Our method achieves
superior colorization performance to other baselines. Specifically, compared with (b) regression-based method, the proposed
model generates more consistent and plausible colors for different objects/regions. Compared with (c) DensePointNet, our
model produces differentiated colors for different objects/regions in the scene, e.g., table, and monitor (top). More visual
results can be found in the supp.

(a) Ground truth (b) Geometric features (c) Semantic features (d) Geometric + Semantic

Fig. 5: Colorization results based on different input features. From the results, we can see that (b) geometric feature-based
model preserves the clear object structures, e.g., the chair on the right, and the (c) semantic feature-based model distinguishes
the objects/regions and generates different colorization, e.g., monitor and walls. The proposed model combines the benefits
of both and produces appealing colorization results. Please zoom in for more details.

(a) Ground truth (b) lg + ls (C) ) lg + ls + lcm (d) lg+ls + lcon (e) lg + ls + lcm+ lcon

Fig. 6: Colorization results based on different settings of loss terms. From left to right columns are results with different loss
functions. It is clear that with the help of the two proposed loss terms, our loss function constrains the model to generate
realistic colorization with more consistent and colorful colors. Please zoom in for more details.

ground truth, thus achieving good performance on MSE and  and FPD and the second-best on CM. As shown in Fig. 6,
FPD. Combining these losses, the proposed model achieves the method of (c) introduces the ¢.,, term, which improves
the best-balanced performance, with the best result on MSE  the color distribution of the scene. In contrast, the method of



(d) combines the /.., term, which colorizes the scene more
consistently and smoothly, such as desks in the office scenes.
As the consistency loss strengthens the inner smoothness
of the same object, which contradicts the definition of
the colorfulness metric, adding the £.,, term degrades the
colorfulness of the final result. It can be concluded that a
realistic colorization result should be a balance between the
object semantics consistency and colorfulness.

V. CONCLUSION

This paper proposes a novel semantics-and-geometry-
aware network (SGNet) for realistic scene-level point cloud
colorization. Specifically, our model fully explores the ge-
ometric and semantic cues in a probabilistic generative
adversarial framework for an automatic color generation.
Furthermore, we design a colorfulness metric loss and a
pairwise consistency loss, which enforce the model to gen-
erate consistent colors with a wide color distribution. Ex-
tensive experiments demonstrate superior performance over
other state-of-the-art competitors. Our method produces vivid
colorization with a clear structure for different objects and
regions. To our knowledge, we are the first to generate
realistic colors for point clouds of large-scale indoor scenes.
We hope that our study will strongly boost growth in this
community.
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